Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38648669

RESUMO

Sex differences in metabolic dysfunction-associated steatotic liver disease (MASLD) have been reported. Oxidative stress and inflammation are involved in the progression of MASLD. Thus, we aimed to evaluate liver redox homeostasis and inflammation in male and female rats fed a high-fat diet (HFD). Male and female Wistar rats were divided into the following groups: standard chow diet (SCD) or HFD during 12 weeks. HFD groups of both sexes had higher hepatocyte injury, with no differences between the sexes. Portal space liver inflammation was higher in females-HFD compared to females-SCD, whereas no differences were observed in males. Lobular and overall liver inflammation were higher in HFD groups, regardless of sex. TNF-α, IL-6, and IL-1ß levels were higher in males-HFD compared to males-SCD, but no differences were observed in females. Catalase activity was higher in males compared to females, with no differences between the SCD and HFD groups of both sexes. Glutathione peroxidase activity was higher in females compared to males, with no differences between the SCD and HFD groups in both sexes. Lipid peroxidation was higher in males-HFD compared to SCD, while no differences were observed in females. Furthermore, both cytoplasmic and nuclear NRF2 staining were lower in the HFD group compared to the SCD group in males. However, female-HFD exhibited reduced nuclear NRF2 staining compared to the female-SCD group. In conclusion, our study demonstrated that while both male and female rats developed MASH after 12 weeks of HFD, the alterations in inflammatory cytokines and redox balance were sexually dimorphic.

2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542437

RESUMO

NADPH oxidase enzymes (NOX) are involved in all stages of carcinogenesis, but their expression levels and prognostic value in breast cancer (BC) remain unclear. Thus, we aimed to assess the expression and prognostic value of NOX enzymes in BC samples using online databases. For this, mRNA expression from 290 normal breast tissue samples and 1904 BC samples obtained from studies on cBioPortal, Kaplan-Meier Plotter, and The Human Protein Atlas were analyzed. We found higher levels of NOX2, NOX4, and Dual oxidase 1 (DUOX1) in normal breast tissue. NOX1, NOX2, and NOX4 exhibited higher expression in BC, except for the basal subtype, where NOX4 expression was lower. DUOX1 mRNA levels were lower in all BC subtypes. NOX2, NOX4, and NOX5 mRNA levels increased with tumor progression stages, while NOX1 and DUOX1 expression decreased in more advanced stages. Moreover, patients with low expression of NOX1, NOX4, and DUOX1 had lower survival rates than those with high expression of these enzymes. In conclusion, our data suggest an overexpression of NOX enzymes in breast cancer, with certain isoforms showing a positive correlation with tumor progression.


Assuntos
Neoplasias da Mama , NADPH Oxidases , Humanos , Feminino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxidases Duais/genética , Neoplasias da Mama/genética , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , Expressão Gênica , NADPH Oxidase 4/genética , NADPH Oxidase 1/genética
3.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513357

RESUMO

Thyroid disorders affect more women than men, but the underlying mechanisms contributing to this disparity remain incompletely understood. Thyrotropin (TSH), the primary regulator of thyroid oxidative hormonogenesis, has been implicated as a risk factor for proliferative thyroid diseases and a predictor of malignancy. In this study, we aimed to evaluate the impact of sustained elevated TSH levels on thyroid redox homeostasis, inflammatory markers, and DNA damage response in both male and female rats. Rats were treated with methimazole for 7 or 21 days, and hormonal measurements were conducted. H2O2 levels were evaluated in thyroid membrane fractions, while enzymatic activities were assessed in total thyroid homogenates. Sex-specific differences emerged, with females displaying higher reactive oxygen species levels - increased transiently NOX and sustained DUOX activities. Lipid peroxidation marker 4-hydroxynonenal (4-HNE) was elevated in females at both time points, contrasting with males just at 21 days. Sexual dimorphism was observed in DNA damage response, with females showing higher γH2AX levels at 21 days. Elevated IL-1ß, TNF-α, CD11b mRNA, and phospho-NF-κB levels at 7 days indicated a distinct inflammatory profile in females. Notably, both sexes exhibited upregulated antioxidant enzymes. Our data suggest that females are more susceptible to oxidative damage and inflammation in our goiter model, which may be associated with higher ROS production and a less-efficient antioxidant defense system. These findings provide insights into the sex-specific mechanisms underlying thyroid dysfunction and highlight the importance of considering sex disparities in thyroid disorder research.


Assuntos
Antioxidantes , Bócio , Ratos , Feminino , Masculino , Humanos , Animais , Antioxidantes/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Tireotropina , Inflamação
4.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139762

RESUMO

Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (γH2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise.

5.
J Endocrinol ; 254(2): 77-90, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35635310

RESUMO

Estrogen deficiency causes metabolic disorders in humans and rodents, including in part due to changes in energy expenditure. We have shown previously that skeletal muscle mitochondrial function is compromised in ovariectomized (Ovx) rats. Since physical exercise is a powerful strategy to improve skeletal muscle mitochondrial content and function, we hypothesize that exercise training would counteract the deficiency-induced skeletal muscle mitochondrial dysfunction in Ovx rats. We report that exercised Ovx rats, at 60-65% of maximal exercise capacity for 8 weeks, exhibited less fat accumulation and body weight gain compared with sedentary controls. Treadmill exercise training decreased muscle lactate production, indicating a shift to mitochondrial oxidative metabolism. Furthermore, reduced soleus muscle mitochondrial oxygen consumption confirmed that estrogen deficiency is detrimental to mitochondrial function. However, exercise restored mitochondrial oxygen consumption in Ovx rats, achieving similar levels as in exercised control rats. Exercise-induced skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α expression was similar in both groups. Therefore, the mechanisms by which exercise improves mitochondrial oxygen consumption appears to be different in Ovx-exercised and sham-exercised rats. While there was an increase in mitochondrial content in sham-exercised rats, demonstrated by a greater citrate synthase activity, no induction was observed in Ovx-exercised rats. Normalizing mitochondrial respiratory capacity by citrate synthase activity indicates a better oxidative phosphorylation efficiency in the Ovx-exercised group. In conclusion, physical exercise sustains mitochondrial function in ovarian hormone-deficient rats through a non-conventional mitochondrial content-independent manner.


Assuntos
Condicionamento Físico Animal , Animais , Citrato (si)-Sintase/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Ovariectomia , Condicionamento Físico Animal/fisiologia , Ratos
6.
Environ Toxicol Pharmacol ; 93: 103887, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598755

RESUMO

Microcystin-LR (MC-LR) is a potent cyanotoxin that can reach several organs. However subacute exposure to sublethal doses of MC-LR has not yet well been studied. Herein, we evaluated the outcomes of subacute and sublethal MC-LR exposure on lungs. Male BALB/c mice were exposed to MC-LR by gavage (30 µg/kg) for 20 consecutive days, whereas CTRL mice received filtered water. Respiratory mechanics was not altered in MC-LR group, but histopathology disclosed increased collagen deposition, immunological cell infiltration, and higher percentage of collapsed alveoli. Mitochondrial function was extensively affected in MC-LR animals. Additionally, a direct in vitro titration of MC-LR revealed impaired mitochondrial function. In conclusion, MC-LR presented an intense deleterious effect on lung mitochondrial function and histology. Furthermore, MC-LR seems to exert an oligomycin-like effect in lung mitochondria. This study opens new perspectives for the understanding of the putative pulmonary initial mechanisms of damage resulting from oral MC-LR intoxication.


Assuntos
Microcistinas , Mitocôndrias , Animais , Ingestão de Alimentos , Pulmão , Masculino , Toxinas Marinhas , Camundongos , Microcistinas/metabolismo , Microcistinas/toxicidade , Oligomicinas/metabolismo , Oligomicinas/farmacologia
7.
Front Physiol ; 13: 811514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370771

RESUMO

Objective: To evaluate the relationship between oxidative stress and NGAL levels in blood and urine of amateur athletes after participating in a 100 km ultramarathon. Methodology: The sample was composed of seven athletes, submitted to anthropometric assessment, cardiopulmonary exercise test, collection of urine and blood, measurement of body weight. The rate of perceived exertion (RPE), competition duration, heart rate (HR), energy expenditure and oxygen consumption (V'O2") were also measured during the event. The energy consumption during the race was verified at its end. The analyses were based on the means (M) and respective standard deviations (SD), with statistical significance set at 5% (p < 0.05). Paired t-test was used for comparison between the periods before and after the competition, and Pearson's correlation coefficient was used to measure the linear correlation between quantitative variables. Results: Body mass index (BMI) of the sample was 25.75 kg/m2 ± 3.20, body fat percentage 18.54% ± 4.35% and V'O2"max 48.87% ± 4.78. Glucose, cortisol, and neutrophil gelatinase-associated lipocalin (NGAL) (p < 0.01) as well as glutathione peroxidase (GPx) active were higher after the race when compared to basal values. Moreover, lactate, creatinine, microalbuminuria, and glomerular filtration rate (GFR) (p < 0.001) were also higher after the race. After the competition, there was a significant correlation only between serum NGAL and creatinine, which was classified as strong and positive (r: 0.77; p < 0.05). There was a significant reduction (p < 0.05) of body weight after the event (72.40 kg ± 9.78) compared to before it (73.98 kg ± 10.25). In addition, we found an increase of RPE (p < 0.001) after the race. The competition lasted 820.60 min (±117.00), with a 127.85 bpm (±12.02) HR, a 2209.72 kcal ± 951.97 energy consumption, 7837.16 kcal ± 195.71 energy expenditure, and 28.78 ml/kg/min-1 (±4.66) relative V'O2"max. Conclusion: The lack of correlation between oxidative stress biomarkers and serum and urine NGAL suggests that NGAL is more sensitive to inflammatory processes than to ROS levels.

8.
J Nutr Biochem ; 104: 108976, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35245653

RESUMO

Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.


Assuntos
Dieta Hiperlipídica , Infecções Sexualmente Transmissíveis , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Frutose/efeitos adversos , Frutose/metabolismo , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Infecções Sexualmente Transmissíveis/metabolismo , Triglicerídeos/metabolismo , Água/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 1041676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601011

RESUMO

Coronavirus disease 2019 (COVID-19) was characterized as a pandemic in March, 2020 by the World Health Organization. COVID-19 is a respiratory syndrome that can progress to acute respiratory distress syndrome, multiorgan dysfunction, and eventually death. Despite being considered a respiratory disease, it is known that other organs and systems can be affected in COVID-19, including the thyroid gland. Thyroid gland, as well as hypothalamus and pituitary, which regulate the functioning of most endocrine glands, express angiotensin-converting enzyme 2 (ACE2), the main protein that functions as a receptor to which SARS-CoV-2 binds to enter host cells. In addition, thyroid gland is extremely sensitive to changes in body homeostasis and metabolism. Immune system cells are targets for thyroid hormones and T3 and T4 modulate specific immune responses, including cell-mediated immunity, natural killer cell activity, the antiviral action of interferon (IFN) and proliferation of T- and B-lymphocytes. However, studies show that patients with controlled hypothyroidism and hyperthyroidism do not have a higher prevalence of COVID-19, nor do they have a worse prognosis when infected with the virus. On the other hand, retrospective observational studies, prospective studies, and case reports published in the last two years reported abnormal thyroid function related to acute SARS-CoV-2 infection or even several weeks after its resolution. Indeed, a variety of thyroid disorders have been documented in COVID-19 patients, including non-thyroidal illness syndrome (NTIS), subacute thyroiditis and thyrotoxicosis. In addition, thyroid disease has already been reported as a consequence of the administration of vaccines against SARS-CoV-2. Overall, the data revealed that abnormal thyroid function may occur during and in the convalescence post-COVID condition phase. Although the cellular and molecular mechanisms are not completely understood, the evidence suggests that the "cytokine storm" is an important mediator in this context. Thus, future studies are needed to better investigate the pathophysiology of thyroid dysfunction induced by COVID-19 at both molecular and clinical levels.


Assuntos
COVID-19 , Doenças da Glândula Tireoide , Humanos , SARS-CoV-2/metabolismo , Vacinas contra COVID-19 , Estudos Prospectivos , Estudos Retrospectivos , Peptidil Dipeptidase A/metabolismo , Doenças da Glândula Tireoide/complicações , Doenças da Glândula Tireoide/epidemiologia
10.
Oxid Med Cell Longev ; 2021: 6638420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868573

RESUMO

Obesity is usually linked to oxidative stress, which can lead to damage to biomolecules. The combination of aerobic and strength exercises seems to induce health benefits in obese individuals, but little is known about the effects of combined physical exercise on redox homeostasis and DNA damage in this population. Thus, the aim of the current study was to determine the effects of 16 weeks of combined physical exercise on biomarkers of oxidative stress and DNA damage in obese women. 17 obese women underwent 16 weeks of a combined physical training program, 3 times per week. Anthropometric and biochemical parameters, serum superoxide dismutase (SOD) and glutathione peroxidase activity, plasma 8-isoprostane levels, and DNA and chromosomal damage were evaluated before and after physical training. Combined physical exercise training decreased body weight (83.2 ± 9.6 vs. 80.2 ± 9.6 kg), body mass index (33.8 ± 3.6 vs. 32.6 ± 3.7 kg·m-2), body fat (40.2 ± 2.6 vs. 39.0 ± 3.2%), and waist circumference (99.3 ± 9.4 vs. 94.1 ± 8.8 cm), while the fat-free mass was augmented (59.9 ± 2.9 vs. 60.7 ± 3.1 kg). Moreover, blood glucose reduced (113.5 ± 29.6 vs. 107.3 ± 28.9 mg/dL) along with high-density lipoprotein (54.6 ± 18.1 vs. 59.0 ± 18.8 mg/dL), TSH (2.1 ± 1.1 vs. 2.6 ± 1.2 mIU/mL), and free T4 (0.9 ± 0.1 vs. 1.12 ± 0.2 ng/dL) increase after physical exercise training. Plasma 8-isoprostane levels (17.24 ± 7.9 vs. 29.11 ± 17.44 pg/mL) and DNA damage (34.16 ± 7.1 vs. 45.96 ± 5.8% DNA in tail) were also higher after physical training. No changes were observed in chromosomal damage levels. These results suggest that 16 weeks of combined exercise training 3 times per week is effective in reducing body fat but also increases oxidative stress and DNA damage in obese women.


Assuntos
Biomarcadores/metabolismo , Dano ao DNA/genética , Exercício Físico/fisiologia , Leucócitos/metabolismo , Obesidade/sangue , Obesidade/terapia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Oxirredução
11.
Mol Cell Endocrinol ; 529: 111266, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831503

RESUMO

Thyroid cancer is the most frequent cancer of the endocrine system. Most patients are treated with thyroidectomy followed by radioiodine therapy. However, in part of the patients, a reduction of the sodium-iodide symporter (NIS) occurs, rendering radioiodine therapy ineffective. Moreover, epithelial-mesenchymal transition (EMT) may occur, leading to more aggressive and invasive features. Herein, we evaluated the effect of the flavonoid quercetin on EMT and NIS expression in BCPAP, a papillary thyroid carcinoma cell line. BCPAP was treated with 100 µM quercetin for 24 h and cell viability, apoptosis, EMT markers and NIS were evaluated. Quercetin decreased cell viability by enhancing apoptosis. The flavonoid also reduced matrix metalloproteinase 9 and increased E-cadherin mRNA levels, inhibiting BCPAP adhesion and migration. Additionally, quercetin increased NIS expression and function. Thus, our results suggest that quercetin could be useful as adjuvant in thyroid cancer therapy, inducing apoptosis, reducing invasion and increasing the efficacy of radioiodine therapy.


Assuntos
Antígenos CD/genética , Antineoplásicos Fitogênicos/farmacologia , Caderinas/genética , Quercetina/farmacologia , RNA Mensageiro/genética , Simportadores/genética , Glândula Tireoide/efeitos dos fármacos , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Caderinas/agonistas , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro/agonistas , RNA Mensageiro/metabolismo , Rutina/farmacologia , Transdução de Sinais , Simportadores/agonistas , Simportadores/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
12.
Toxicon ; 191: 18-24, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359390

RESUMO

Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 µg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.


Assuntos
Alcaloides/toxicidade , Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Animais , Toxinas de Cianobactérias , Fígado , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Função Respiratória
13.
Environ Pollut ; 269: 116188, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33302087

RESUMO

C60 fullerene (C60) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C60 emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C60 emulsion toxicity. The first group of mice (protocol 1) received intratracheally C60 emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C60 emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C60 emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.


Assuntos
Fulerenos , Animais , Emulsões , Eugenol/toxicidade , Fulerenos/toxicidade , Pulmão , Masculino , Camundongos , Espermatozoides
14.
Sci Rep ; 10(1): 15646, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973319

RESUMO

Maternal nicotine exposure causes several consequences in offspring phenotype, such as obesity and thyroid dysfunctions. Nicotine exposure can increase oxidative stress levels, which could lead to thyroid dysfunction. However, the mechanism by which nicotine exposure during breastfeeding leads to thyroid gland dysfunction remains elusive. We aimed to investigate the long-term effects of maternal nicotine exposure on redox homeostasis in thyroid gland, besides other essential steps for thyroid hormone synthesis in rats from both sexes. Lactating Wistar rats were implanted with osmotic minipumps releasing nicotine (NIC, 6 mg/kg/day) or saline (control) from postnatal day 2 to 16. Offspring were analyzed at 180-day-old. NIC males showed lower plasma TSH, T3 and T4 while NIC females had higher T3 and T4. In thyroid, NIC males had higher sodium-iodide symporter protein expression, whereas NIC females had higher thyroid-stimulating hormone receptor (TSHr) and thyroperoxidase (TPO) protein expression. TPO activity was lower in NIC males. Hydrogen peroxide generation was decreased in NIC males. Activities of superoxide dismutase, catalase and glutathione peroxidase were compromised in NIC animals from both sexes. 4-Hydroxynonenal was higher only in NIC females, while thiol was not affected in NIC animals from both sexes. NIC offspring also had altered expression of sex steroid receptors in thyroid gland. Both sexes showed similar thyroid morphology, with lower follicle and colloid size. Thyroid from female offspring exposed to nicotine during breastfeeding developed oxidative stress, while the male gland seemed to be protected from redox damage. Thyroid dysfunctions seem to be associated with redox imbalance in a sex-dependent manner.


Assuntos
Aleitamento Materno , Exposição Materna/efeitos adversos , Nicotina/efeitos adversos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Caracteres Sexuais , Glândula Tireoide/patologia , Glândula Tireoide/fisiopatologia
15.
J Steroid Biochem Mol Biol ; 203: 105728, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712213

RESUMO

The non-therapeutic use of the androgenic anabolic steroid Nandrolone Decanoate is popular due to its effects on physical performance and body composition, especially for its lipolytic and anabolic effects associated. However, high doses of such drugs are often associated with a series of pathologies related to unbalanced redox homeostasis, which, in turn, can be linked to inflammation. The oxidative stress onset could deregulate the secretion of cytokines, evidencing a dysfunctional adipocyte. Thus, the aim of this study was to investigate the effect of supraphysiological doses of Nandrolone Decanoate on redox homeostasis of retroperitoneal fatpad of male rats and its relationship with cytokines-based inflammatory signaling. Hydrogen peroxide production was assessed in the retroperitoneal fat pad of adult male rats which received either 10 mg kg of Nandrolone Decanoate or only a vehicle. Also, catalase, superoxide dismutase and glutathione peroxidase activities were measured, together with total reduced thiols and protein carbonylation, as well as IL-1ß, TNF-α, and IL-6 local levels. High doses of Nandrolone Decanoate caused an increase in the hydrogen peroxide production, together with lower activities of the antioxidant enzymes and lower levels of total reduced thiol. There were also higher protein carbonylation and greater levels of IL-1ß, TNF-α, and IL-6 in the treated group compared to control group. Therefore, it was possible to verify that high doses of Nandrolone Decanoate cause oxidative stress and induce higher inflammatory signaling in retroperitoneal fat pad of male rats.


Assuntos
Anabolizantes/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Decanoato de Nandrolona/farmacologia , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar
16.
J Endocr Soc ; 4(7): bvaa064, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32666010

RESUMO

Studies have reported a possible association between the levels of oxidative stress biomarkers in follicular fluid (FF) and infertility treatment outcomes. FF analysis can provide important information about oocyte quality. This study aimed to evaluate the possible correlation between oxidative stress biomarker and intrafollicular hormone levels and clinical and laboratory parameters in women during controlled ovarian stimulation. These women were undergoing in vitro fertilization with intracytoplasmic sperm injection (ICSI).The FF samples were acquired from September 2012 to February 2014 from women undergoing private fertility treatment in Rio de Janeiro, Brazil. A total of 196 women who were undergoing ICSI and had different infertility diagnoses were recruited. The FF from each patient (average patient age of 36.3 ± 4.3 years) was collected following puncture of just one follicle with the largest diameter. After ruling out blood contamination by spectrophotometry, 163 patient samples were utilized in the study. In the FF, the progesterone levels were negatively correlated with (a) hydrogen peroxide scavenging capacity (HPSC) (r = -0.294, P < 0.0001), (b) total number of follicles (r = -0.246, P < 0.001) and (c) total number of oocytes punctured (r = -0.268, P = 0.0001). The concentration of serum estradiol exhibited a positive correlation with intrafollicular HPSC (r = 0.165, P = 0.037). Our data indicate that the FF levels of estradiol and progesterone are related to the FF redox status, which is closely associated with the number of oocytes obtained during ICSI procedures.

17.
Genet Mol Biol ; 43(1 suppl. 1): e20190096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453337

RESUMO

NOX/DUOX enzymes are transmembrane proteins that carry electrons through biological membranes generating reactive oxygen species. The NOX family is composed of seven members, which are NOX1 to NOX5 and DUOX1 and 2. DUOX enzymes were initially called thyroid oxidases, based on their high expression level in the thyroid tissue. However, DUOX expression has been documented in several extrathyroid tissues, mostly at the apical membrane of the salivary glands, the airways, and the intestinal tract, revealing additional cellular functions associated with DUOX-related H2O2 generation. In this review, we will briefly summarize the current knowledge regarding DUOX structure and physiological functions, as well as their possible role in cancer biology.

18.
Horm Metab Res ; 51(10): 671-677, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31174228

RESUMO

Plastics are ubiquitously present in our daily life and some components of plastics are endocrine-disrupting chemicals, such as bisphenol A and phthalates. Herein, we aimed to evaluate the effect of plastic endocrine disruptors on type 1 and type 2 deiodinase activities, enzymes responsible for the conversion of the pro-hormone T4 into the biologically active thyroid hormone T3, both in vitro and in vivo. Initially, we incubated rat liver type 1 deiodinase and brown adipose tissue type 2 deiodinase samples with 0.5 mM of the plasticizers, and the deiodinase activity was measured. Among them, only BPA was capable to inhibit both type 1 and type 2 deiodinases. Then, adult male Wistar rats were treated orally with bisphenol A (40 mg/kg b.w.) for 15 days and hepatic type 1 deiodinase and brown adipose tissue type 2 deiodinase activities and serum thyroid hormone concentrations were measured. In vivo bisphenol A treatment significantly reduced hepatic type 1 deiodinase activity but did not affect brown adipose tissue type 2 deiodinase activity. Serum T4 levels were higher in bisphenol A group, while T3 remained unchanged. T3/T4 ratio was decreased in rats treated with bisphenol A, reinforcing the idea that peripheral metabolism of thyroid hormone was affected by bisphenol A exposure. Therefore, our results suggest that bisphenol A can affect the metabolism of thyroid hormone thus disrupting thyroid signaling.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Iodeto Peroxidase/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fenóis/farmacologia , Tecido Adiposo Marrom/enzimologia , Animais , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar
19.
Biomed Pharmacother ; 109: 2342-2347, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551493

RESUMO

Phytomodulatory proteins from the latex of the medicinal plant Calotropis procera has been shown to be implicated in many pharmacological properties. However there is no current information about their activity on glucose metabolism, although the latex is used in folk medicine for treating diabetes. In this study the phytomodulatory proteins (LP) from C. procera latex were assessed on glycemic homeostasis. Control animals received a single intravenous dose (5 mg/kg) of LP or saline solution (CTL). Four hours after treatment, the animals were euthanized and their livers were excised for analysis by western blot and RT-PCR AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase (PEPCK) and tumor necrosis factor alpha (TNF-α). In vivo tests of intraperitoneal tolerance to insulin, glucose and pyruvate were also performed, and the effect of LP administration on fed glycemia was studied followed by blood analysis to determine serum insulin levels. Treatment with LP reduced glycemia two hours after glucose administration (LP: 87.2 ± 3.70 mg/dL versus CTL: 115.6 ± 8.73 mg/dL). However, there was no change in insulin secretion (CTL: 14.16 ± 0.68 mUI/mL and LP: 14.96 ± 0.55 mUI/mL). LP improved the insulin sensitivity, represented by a superior glucose decay constant during an insulin tolerance test (kITT) (4.17 ± 0.94%/min) compared to the CTL group (0.82 ± 0.72%/min), and also improved glucose tolerance at 30 min (105.2 ± 12.4 mg/dL versus 154.2 ± 18.51 mg/dL), while it decreased hepatic glucose production at 15 and 30 min (LP: 75.5 ± 9.31 and 52.5 ± 12.05 mg/dL compared to the CTL: 79.0 ± 3.02 and 84.5 ± 7.49 mg/dL). Furthermore, there was a significant inhibition of gene expression of PEPCK (LP: 0.66 ± 0.06 UA and CTL: 1.14 ± 0.22 UA) and an increase of phosphorylated AMPK (LP: 1.342 ± 0.21 UA versus CTL: 0.402 ± 0.09 UA). These findings confirm the effect of LP on glycemic control and suggest LP may be useful in diabetes treatment. However, the pharmacological mechanism of LP in PEPCK modulation still needs more clarification.


Assuntos
Adenilato Quinase/metabolismo , Calotropis , Glucose/metabolismo , Látex/farmacologia , Fígado/metabolismo , Transdução de Sinais/fisiologia , Animais , Glucose/antagonistas & inibidores , Índice Glicêmico/efeitos dos fármacos , Índice Glicêmico/fisiologia , Látex/isolamento & purificação , Fígado/efeitos dos fármacos , Masculino , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 8(1): 14751, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282988

RESUMO

Maternal diet plays a critical role in health development. Perinatal overnutrition induces metabolic dysfunctions and obesity in the offspring. Obesity is associated with endocannabinoid system (ECS) over activation and oxidative stress. Liver ECS activation induces hepatic steatosis, inflammation and fibrosis while the antagonism of cannabinoid receptors ameliorates these alterations. Here, we investigated the effect of perinatal maternal high-fat diet (HF, 29% of calories as fat) on the ECS and antioxidant system in liver of male and female adult rat offspring (180 days old). Maternal HF diet increased hepatic cannabinoid receptors, ECS metabolizing enzymes and triglyceride content, with male offspring more affected. ECS changes are likely independent of estradiol serum levels but associated with increased hepatic content of estrogen receptor, which can stimulate the expression of ECS components. Differently, maternal HF diet decreased the activity of the antioxidant enzymes glutathione peroxidase, superoxide dismutase and catalase, and increased oxidative stress markers in both sexes. Alterations in the redox homeostasis were associated with mitochondria damage but not with liver fibrosis. Our data suggest that maternal HF diet induces ECS over activation in adulthood, and that male offspring are at higher risk to develop liver disease compared with female rats.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Cirrose Hepática/genética , Fígado/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Canabinoides/genética , Animais , Catalase/genética , Catalase/metabolismo , Endocanabinoides/metabolismo , Estradiol/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Homeostase/genética , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ratos , Receptores de Canabinoides/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...